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Equations of Motion

All of these are supposed to give the same results

= Newton's second law: LT — V(7
» Complicated vector arithmetic & coordinate system dependence
= Lagrangian Formalism: b — ap (géi) =0
» nsecond-order differential equations
: : : OH _ ;. OH _ __ .
= Hamiltonian Formalism: ap; — di 8q;, — Pi
> 2n first-order differential equations
= Hamilton-Jacobi equation: H (%q) =FE

» S(0,P) is a generator of canonical transformation (4, p) — ((j |3)

for which H(q, p) > H'(P) . If S(q, P) is separable, then the
Hamilton-Jacobi equation breaks up into #ordinary
differential equations which can be solved by simple
quadrature. The resulting equations of motion are: o'

R =P.(0): QD= t+k
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Constants of motion

Constants of Motion: any function C({. p. t) of the generalized coordinates,
conjugate momenta and time that is constant along every orbit, i.e., if {j’(t)
and p(t) are a solution to the equations of motion, then

Clq(t1), p(t1), t1] = C[q(t2), p(t2), t2]

for any t1 and 7». The value of the constant of motion depends on the orbit,
but different orbits may have the same numerical value of C'

A dynamical system with n degrees of freedom always has 2n independent
constants of motion. Let ¢; = qi[qGo, Po.t] and p; = pi|Go. Po, t| describe
the solutions to the equations of motion. In principle, these can be inverted
to 2n relations q; .0 = qi,0[q(t). P(t),t] and p; 0 = pi,0[q(t), P(t), t].
By their very construction, these are 21 constants of motion.

If &(Z.t) = ®(&), one of these 2n relations can be used to eliminate .
This leaves 21 — 1 non-trivial constants of motion, which restricts the

systemtoa 2n — (2n — 1) = l-dimensional surface in phase-space,
namely the phase-space trajectory I'(%)
Note that the elimination of time reflects the fact that the physics are invariant

to time translations t — 1 + 1, i.e., the time at which we pick our initial
conditions can not hold any information regarding our dynamical system.
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Integrals of MotionI

Integrals of Motion: any function I (&, U) of the phase-space coordinates
(2, U) alone that is constant along every orbit, i.e.

I[Z(t1),0(t1)] = I[E(t2), D(t2)]
for any 1 and . The value of the integral of motion can be the same for

different orbits. Note that an integral of motion can not depend on time.
Thus, all integrals are constants, but not all constants are integrals.

Integrals of motion come in two kinds:

Isolating Integrals of Motion: | these reduce the dimensionality of the

trajectory l"(t) by one. Therefore, a trajectory in a dynamical system with n
degrees of freedom and with 2 isolating integrals of motion is restricted to a
2n — 1 dimensional manifold in the 2n-dimensional phase-space. Isolating
integrals of motion are of great practical and theoretical importance.

Non-lsolating Integrals of Motion: |these are integrals of motion that do not

reduce the dimensionality of I (t) They are of essentially no practical value
for the dynamics of the system.
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Quadrature

= Integration by quadrature either means solving an
integral analytically (i.e., symbolically in terms of
known functions), or solving of an integral
numerically (e.g., Gaussian quadrature, Newton-
Cotes formulas).
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Integrating by Quadrature I

» Let's consider a 1D (7= 1) conservative Hamiltonian

system . p) =%2+V(q)

oH v
S dg
* The equations of motion are H
“dv(q) g=H_p
=T p.
i+ g 9D g
i(CI—ZJFV(CI)]=0 therefore C.|—2+V(q):l = const
dt| 2 ! 2 '

= The constant (in time) function I, is an integral of
motion (15" isolating integral)

J dg -- now integrate by quadrature
J2(1,-V(a))  and invert to obtain q(t)

. I; is a trivial non-isola’ring in’regml
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Integrating by Quadrature IT

= Notice that there have been four steps in this
procedure

1. TIdentification of the first integral, ;.

2. Use of the integral I; o reduce the order of the
differential equation by one.

3. An explicit “integration by quadrature”.

> Beyond some simple polynomial potentials, this can be
done only numerically

4. An inversion to obtain a single-valued solution ¢(7)
> May be very complicated
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Dynamics in Phase Space

simple harmonic oscillator pendieliem

Py 27

Xmin \/Z(E_V (CI)) ] C()(E)

-- period of oscillations (a function of energy)
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Taxonomy of 2D fixed points

* The fixed points are those values of p,and ¢, for
which the phase flow is stationary:

p=0;g=0atp=p,andq=q,

Stable {attractors) Neutral Unstable {repellers)

center
/_\ F;i'dle
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Time-dependent systems

= Integrals of motion for time-dependent (non-
autonomous) systems (such as the Courant-Snyder
invariant) are extremely rare and may require
some luck to discover.

= Tn this class we will learn about two classes of
time-dependent periodic systems, applicable to
accelerators:

» Systems, where time-dependence is eliminated by
transforming the time variable (similar o the Courant-
Snyder invariant)

> And systems, where time dependence is manifested in
special delta-function like “kicks". Such systems will be
called “integrable mappings”.
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Beyond n=1

= For dynamical systems with n=1, we can
integrate the pair of first-order diff. equations.

= At the end of 19™ century all dynamical systems
(for n>1) were thought to be integrable.
> 1885 math. Prize was established for finding the
solution of an n-body problem (n>2)
= However, nonintegrable systems constitute the
majority of all real-world systems (15" example,
H. Poincare, 1895) 7
» The phase space of a simple 3-body system is | Q&& "
far from simple. This plot of velocity versus
position is called a homoclinic tangle. (
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Symplectic matrix

= The symmetry of Hamilton's equations allows to
consider the variables p;, and ¢;on an equal footing.

Lf Z= (G s Gos PrveeoPy)
= Hamilton's equations can be written as:
2=J-VH(2z)

where the matrix J is the 2nx2n symplectic matrix

)

and | is the nxn unit matrix.
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Integrals of Motion IT

= A conservative (autonomous) Hamiltonitan system
(i.e. H(g.p,t) = H(q,p)) with ndegrees of freedom
may have between 1 and 2/ -1 isolating integrals
of motion.

= Definition: Two functions 1.(G,p) and 1,(d,p) are
said to be in involution if their Poisson bracket
vanishes, i.e. if

ol o1, &l ol
|’| — 1 2 1 2:0
[ 1] iz_llaqi op, op; o
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Poisson Brackets

- of og of &g
[fol=2 s ™

i 00; 9p; Ip; OG

f g] _[ ]‘ {qmﬁj} =10
| f.c|=0 for ¢ a constant, {pi,pi} =10
/i + fr.8)=[ fig]+[ f-g]. {4, P} = 03
fifr-8)= il 28]+ g) fo
g[f"é‘] | '?;h | P fl [f.[9.h]I+[g.[h, f1]+[h.[f,9]]1=0
d of 9oH of OH  df
Ef(ﬂq‘rtjz q Op - dp g + ot

= {f,H}+%.

If a quantity 7(p,q) is explicitly time independent and it is in
involution with //, then 7(p,q) is an integral of motion.
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Integrals of Motion ITI

= Tt is obvious that for an autonomous system His
an integral of motion, [H, /1= 0. And so is any
function of H: [H, f{(H)1=0

= Tsolating integrals must be functionally
independent of each other!
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Integrals of Motion IV

= How many integrals of motion does one need to
“solve” the dynamical equations of motion?

= Ingeneral, a system of » first-order diff.
equations requires /-7 constants (integrals) in
order to effect a complete “integration”.

= The Hamiltonian system has 2n equations. Does it
mean we require 2n-1integrals?
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How many?

= The Hamiltonian system has 2n equations. Does it
mean we require 2n-1integrals?

= Answer: It turns out, because of symmetric nature
of Hamilton's equation (a.k.a. the symplectic
nature), we need only 7 integrals of motion.
» This miracle occurs due to canonical transformations
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Liouville-Arnold Theorem

= The Liouville-Arnold theorem states that if, ina
Hamiltonian dynamical system with n degrees of
freedom, there are also known n first integrals of
motion that are independent and in involution, then
there exists a canonical transformation to action-
angle coordinates in which the transformed
Hamiltonian is dependent only upon the action
coordinates and the angle coordinates evolve
linearly in time. Thus the equations of motion for
the system can be solved in quadratures if the
canonical transform is explicitly known.
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Canonical Transformations

m Goal: To find transformations

0, =049, P----Ppo1) E=E(q.....q,. P P,
that satisty Hamilton’s equation of motion
. OoH . : oK
; = = — __ P -
L, > O - dP " do,

m K 1s the transformed Hamiltonian K = K(Q.P.t)

m Hamilton’s principle requires

5_[: (pr"?f —H(q,p:f))df

2% Fermilab
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Phase-space volume is preserved under

—C0000ICaAl Transformations

_“L[ dPdQ, = “1[ dp.dg.  -- one of Poincare invariants
i=1 i=1

» Therefore, the canonical transformation must
have a unit Jacobian. Which of these could be
canonical transformations?

Q=-p; P=q
q=PcosQ; p=PsinQ

q=+PsinQ; p=+PcosQ

. P

=20, P=—
Q=2q 5
Q=2q; P=2p
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PO -K+

dF

Canonical transformation

—:pfq.’i_H

dt

m Hamilton’s principle

dF

L (h : - ~ [ | : 2
5[ (BO,~K)di=5 {pqu—H——)df:—c?[F]; 0

h

dt

m Satisfiedif p=6¢ =P =60 =0att and 1,
m [ can be any function of p, g, P;, O; and ¢

m It defines a canonical transformation

m Call it the generating function of the transformation

2% Fermilab
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Type-1 Generator

m F=F(q.0) 1s not very general

m [t does not allow 7-dependent transformation

m Fix this by extending to £ = F(q.0.1) <}f‘ Call it Type-1

b= 0h(q.Q.0) , _ OF(q.9.1)
' oq, ? 00.
m This affects the Hamiltonian

Ty g
dt 0gq,

60~ ot
oF,

) K-t
ot

:Pf‘jf_BQerK_H
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Harmonic Oscillator

m Consider a 1-dimensional harmonic oscillator
2 2

P kq 1 2 2 2 2 , k

H(g.p)= + = +m® O =—

(¢-P) =5+ Zm(p q’) -

m Sum of squares = Can we make them sine and cosime?

/(D) sin QO

nca»

2
- K:H:w <}Z< Q is cyclic = P is constant

2m

m Suppose p= f(P)cosQ g =

m Trick 1s to find f{P) so that the transformation 1s canonical

m How?
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Harmonic Oscillator

m [et’s try a Type-1 generator

E'F oF
F(q.0,) p=—L pP=——1
q.9. P= t?fq a0

m Express p as a function of g and O

p=/f(P)cosQ q= J(P) sin Q ‘ p =maq cotQ

ma

: mao
m Integrate with g ﬂ F, = q

cot 0

- p_ m(aqz
T o ~u
EQ i Q We are getting somewhere
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Harmonic Oscillator

oF, oF, ’
1 mogeotQ P=- {i L= Iﬂfﬂg
oq cQ 2sm”Q
m We need to turn H(g, p) into K(Q, P)

m Solve the above equations for ¢ and p

q= E snQ p=+2Pmw cosQ
\ mo

m Now work out the Hamiltonian

p:

K=H= 21?1(}) +m2m2q2) o P

m Things don’t get much simpler than this. ..
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K=woP=FE

Harmonic Oscillator

m Solving the problem 1s trivial

P = const =

j> -
Finally

2% Fermilab

E 5 K o
- P O=ot+a

N 2Pma cos O =~2mE cos(of + o)

’ 2P # 2FE
=,/[—smQ = > sm(of +a)
me mao”
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Phase space

m Oscillator moves 1n the p-¢ and P-Q phase spaces

pn Pn
N2mE
2E £
me @
\ q
2 @
2rE .
m One cycle draws the same area in both spaces
@

= Notice that the phase space volume is preserved

2% Fermilab
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Four Basic Generators

Generator Derivatives Trivial Case
OF; oF. 0. = p.
F(q.0.t =1 p__"1 1 F—=q30. s
1(.9.1) Pi=G T Ta0 [ 9,9, P
OF, OF, O =g,
Fy(q.P.t)-O.F, = O =—" |K=¢qF%
,(g.P.t)-0 )2 o op »=¢ P-p
oF, oF. 0 =—q,
-F;.(pﬂg?r)+prf q; = — = : E:_ﬂ - F3:prr
ﬂp}' DIQ}' E — _p I
OF OF O =p;
F(p.P.O)+qp,—OF |q=—"" O,=— |F,=pP,
('Z‘pf ‘:’fE P; = —4q;
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Summary (I)

= Canonical transformations . dF .
e o . FO -K+—=pg,—H
> Hamiltonian formalism is invariant dt
under canonical transformations
> Preserve phase-space volume
» Generating functions define canonical transformations

= What does it have to do with integrable dynamical
systems?
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The Optimal Transformation I

* The practical use of canonical transformations is to
find those that make the integration of Hamilton's
equations as simple as possible. The optimal case is
when the transformed Hamiltonian depends only on the
new momenta, 7, (like in our Harmonic oscill example)

H(p,- P, 0:---.0,) > K(P,...,P,)
P= ax* =0, i.e., P =const
- aQ,
. K
%= oP
= The equations for Q's can be immediately integrated
Q = fit+o

= The nmomenta P.are the integrals of motion, that

enable us to perform the integration.

X (P, P)

n
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The optimal transformation IT

= We can now transform the solution to our "old"
original p;and g¢.

= Of course, we have to be able to do two things:
1. Find these magical new variables P

2. And, know how to correctly fransform the Hamiltonian
Into its new representation.
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The optimal transformation ITI

LEMMA: If a system with nn degrees of freedom has 12 constants of motion
P;(q, p. t) [or integrals of motion P;(q, )] that are in involution, then there
will also be a set of 1 functions Q; (7. p. t) [or Q;({, P)] which together
with the P; constitute a set of canonical variables.

Thus, given n isolating integrals of motion I;(, p) we can make a

canonical transformation (g, p) — ((j 13) with P; = I;({, p) =constant
and with Qz(f) = Ot + k;

An integrable, Hamiltonian system with n degrees of freedom always has a
set of n isolating integrals of motion in involution. Consequently, the
trajectory I‘(t) is confined to a 2n. — n = n-dimensional manifold
phase-space.

The surfaces specified by (I1. I2. .., I,,) =constant are topologically
equivalent to n-dimensional tori. These are called invariant tori, because any
orbit originating on one of them remains there indefinitely.

In an integrable, Hamiltonian system phase-space is completely filled (one
says ‘foliated’) with invariant tori.
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Motion on the tori

The action variables are defined by:

Ji=5=¢ P-dq

with ~y; the closed loop that bounds cross section A;.
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Motion on the tori

In an integrable, Hamiltonian system phase-space Is
completely foliated with non-intersecting, invariant tori
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Integrable Hamiltonians IV

One might think at this point, that one has to take F’; — I;. However, this
choice is not unique. Consider an integrable Hamiltonian with n = 2
degrees of freedom and let I and I be two isolating integrals of motion in

involution. Now define I, = %(Il + I2) and I = %(Il — I2), thenitis

straightforward to proof that [I,, Iy] = 0, and thus that (I, I}) is also a

set of isolating integrals of motion in involution. In fact, one can construct

infinitelly many sets of isolating integral of motion in involution. Which one
should we choose, and in particular, which one yields the most meaningful
description of the invariant tori?

Answer: The Action-Angle variables

* The idea of action-angle variables is to find the pair of
conjugate variables such that the conjugate "coordinate”
increases by 2m after each complete period of motion .
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Hamilton-Jacobi Equation

= Qur goal is to find the canonical transformation to a set of
constant conjugate momenta. We will use the F, type

generator, S=3(a, )
_0S . 0S
, fB=—
aq| ai

where the f;are the "new"” coordinates. We obtain the
Hamilton-Jacobi equation for Sin nindependent variables

0S
[ql’ aq j K(al)

Here, the right-hand side is to be viewed as a constant
quantity.
Solving this equation is just as difficult as the canonical

equations of motion, except for several classes of dynamical
systems: (1) one-degree of freedom and (2) separable
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Action-Angle variables in 1D

H[qﬁj:h K (1)

oq

:g, 0;@
aq ol

dé o0 (dS
dqg Jl\dq

6 85 . 0
ol CJSaq a0 :6_I<ﬁ Pad

P

2n=¢d9=

1(E) = p(a E)dg

= This is the definition of the action variable
= In 1D, its value does not depend on the choice of p

and g
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Action-Angle variables in 1D

= We can now invert I(E) 2 E(I)-K(I)

= The canonical equations of motion can now be
solved:

| =const: 0z%—Tt+5=w(l)t+5
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Separable systems (n-degrees of freedom)

* The H-J equation for n> 1 cannot, in general, be
solved unless i‘rnis separable, i.e.

5= 35,00 )

0S
= Then Pi= 0 is a function of only one coordinate

and we can define a set of action variables

1
Ii — ZC_’S P; (qi’al""’an)dqi
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Separable systems

= A rather simple example: H :Zn:Hi(qi, D)
i=1

= More examples of separable systems can be found
Landau and Lifshitz "Mechanics”

= Some systems are separable in multiple coordinate
systems (e.g. Cartesian, polar, ...)
» Then, the Action-Angle variables are not unique.
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Summary

= We are trying to draw a distinction between
integrable and non-integrable systems. The latter
can exhibit chaotic behavior (leading to particle
losses in accelerators), whereas the former
exhibits stable periodic behavior.

= The question remains: given a system of equations,
how can one tell a priori whether or not they are
intfegrable?

= We will present several accelerator focusing
systems, where we start the design with a non-
linear integrable system.
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Summary

= The definition of integrability is simple to state:
an autonomous n-degree of freedom Hamiltonian is
integrable if N independent integrals of motion
exist and these are in involution with each other.
However, a failure to find such a set of global
invariants does not exclude the possibility that
the Hamiltonian system in question is integrable.
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Simple example 1

: dF
EQ,-'_K"'E:R;@:' -H

m Try a generating function: F=¢.P - Q.P.
m Canonical transformation generated by F'1s

EQ.f_K+£Z;—F:_K+(Qf_QE)E+EQE :Pf‘?f_H
[

m) 0 =g P=p, <f‘ Identity transformation
K=H
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Simple example 2

m Let’s try this one: F = f(¢,.....q,.0)P.— O,P

m / are arbitrary functions of ¢,...¢q, and ¢

EQf_K+d—F:_K+(f O)P+P8f j @f;i?:pf‘j'f_H
dt aq ; Ct

m O f (‘?1----= 1) ﬁ All “point transformations™ of

generalized coordinates are covered

P =

8@} ﬁ Must invert these » equations to get P,

o
K = H+ﬂ
ot

Let's try one example:
F =F,(q,P)-QP =qg°P -QP -- generator
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Finding the Generator

m Let’s look for a generating function
m Suppose K(Q.P.t)=H(q.p.t) for simplicity

dF . :
- i r:4; — o,
m Easiest way to satisty this would be
- oF or
=F(q.0) oq. = P; 20, =4

m Trivial example: F(gq.0)=q.0,

- p;=9 E=-¢ In the Hamiltonian formalism,

you can freely swap the
coordinates and the momenta
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